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Extrinsic Material:

>

Another way to increase the number of charge carriers is
to add them in from an external source.

Doping or implant is the term given to a process whereby
one element is injected with atoms of another element in
order to change its properties.

Semiconductors (Si or Ge) are typically doped with
elements such as Boron, Arsenic and Phosphorous to
change and enhance their electrical properties.

By doping, a crystal can be altered so that it has a
predominance of either electrons or holes.

Thus, there are two types of doped semiconductors, n-
type (mostly electrons) and p-type (mostly holes).

When a crystal is doped such that the equilibrium carrier
concentrations n, and p, are different from the intrinsic
carrier concentration n, the material is said to be
extrinsic.

Donor impurities (elements
of group V): P, Sb, As
Acceptor elements (group
Il): B, Al, Ga, In

Total number of electrons

I —Al-13
IV - Si—14
V- P-15




Extrinsic Material:

» Inject Arsenic into the crystal with an implant step.

» Arsenic is Group5 element with 5 electrons in its outer
shell, (one more than silicon).

» This introduces extra electrons into the lattice which can
be released through the application of heat and so
produces and electron current.

» The result here is an n-type semiconductor (n for negative
current carrier).

» Inject Boron into the crystal with an implant step.

» Boron is Group3 element is has 3 electrons in its outer
shell (one less than silicon)

» This introduces holes into the lattice which can be made
mobile by applying heat. This gives us a hole current.

» The result is a P-type semiconductor (p for positive
current carrier)
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The Fermi — Dirac distribution function:

» The density of electrons in a semiconductor is related to the density of available states and the
probability that each of these states is occupied.

» The density of occupied states per unit volume and energy is simply the product of the density of
states and the Fermi-Dirac probability function (also called the Fermi function).

» Electrons in solids obey Fermi - Dirac distribution given by: E

1
1 + e[(E_EF );k}‘]

F(E)=

» where k is Boltzmann’s constant k=1.38x10-%3 J/K,

T is the temperature in kelvin.

» The function F(E) called the Fermi-Dirac distribution function
which gives the probability that an electron occupies an electronic
state with energy E.

» The quantity E; is called the Fermi level, and it represents the
energy level at which the probability to find an electron is 50%.

» F(E)




The Fermi — Dirac distribution function:

» The quantity E; is called the Fermi level, and it represents the energy level at which the probability
to find an electron is 50%.

» For an energy E = E. the occupation probability is: 1
F(E)= [(E=E;)/kT]
1+ etE75F)

(Ez—Ez)/kT] 1
F(E;) =1+l ['= —== E

This is the probability for electrons to occupy the Fermi level.

» F(E)



The Fermi — Dirac distribution function:

» At T=0 K, F(E) has rectangular shape:

the denominator of the exponent is
1/(1+0) = 1 when (E<Ef), exp. negative F(E)= [
1/(1+00) = 0 when (E>Ef), exp. Positive It+e

1

(E-Eg)/kT]

» At 0 K every available energy state up to E; is filled with g,
electrons, and all states above E, are empty. }

» At temperatures higher than 0 K, some probability F(E) exists 1
for states above the Fermi level to be filled with electrons and
there is a corresponding probability [1 - F(E)] that states
below E; are empty.

» The Fermi function is symmetrical about Ep for all
temperatures.
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Carrier concentration in Intrinsic Semiconductor:

density of states Fermi distribution carrier
function concentration
E E
Ec
Eg E.
Ey

N(E) 0 05 I pE n(E).p(E)

n=p=n = IF(E)S(E)dE
'EE'

» where S(E)dE is the density of states (cm-3) in the energy range dE. The subscript o used for the
electron and hole concentration symbols (no, po) indicates equilibrium conditions.



Carrier concentration in Intrinsic Semiconductor:
n, = j F(E)S(E)dE o
E,

I
v v

 electrons in conduction band 1 holes in valence band

- E,
n, = [ F(E)Sc(E)dE = N e )/ p, = [l-F(B)S,(E)dE = N,e 55"
E, —iD

27om kT ), 2mm, kT
Nc =2,( kg ) Nv — 2( h;;— )3}'2
» N, and N, are the effective density of states in the conduction band and the valence band,
respectively.

» where: h:Planc’s constanth =6.6261x1034] s
m, : mass of electron

m,, : mass of hole



Carrier concentration in Intrinsic Semiconductor:

» The product of n, and p, at equilibrium is a constant for a particular material and temperature
(what is called the mass action law), even if the doping is varied:

np = ( Nca[_(E‘" -EF)f;fr]) ( Nve[-(EF —E1.JIH])
= NN, HEE] o]

» For intrinsic semiconductors:

Hr'pi — (Nfe[
nf =N_N e

Son = .,/NﬂNl,e[_EEHEHZ

» The intrinsic electron and hole concentrations are equal (since the carriers are created in pairs), n, = p;
thus, the intrinsic concentration is

—(E.—Eg )/ kT | )(N e[—(fﬁ.—amr])
v

|-E, /kT]

2
Hc:rp::r o ilP"";r'

» The intrinsic concentration for Si at room temperature is approximately n. = 1.5 x 10'9 cm?3,



Carrier concentration in Intrinsic Semiconductor:

Fermi level in intrinsic semiconductor

—~(E-—E )/ kT —(E—Ep )/ KT
From n, = N_.e “c75) and p =N, =7

assuming: n=p=n,
E, - E.+E, +kT1DNF
2 2 N,
E =LctEv O™

o 2 4 m

)

d Where E; is called E, (the intrinsic Fermi level)




Carrier concentration in Intrinsic Semiconductor:

Alternative expressions for n and p

Since:

n,=N.exp(E, —E./KT)

N.=n exp(E.-E. /KT)

Substitute in

n=N_exp(E,—E_./KT)

n=n exp(E.—E, /KT Jexp(E, —E./KT)

C

n=n, exp(E; —E, /KT)
Similarly, we can find p

p=n. B}{p(Eﬁ —EF/KT)




Temperature effects:

O Temperature effect on band gap 0 Temperature effect on carrier concentration
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Extrinsic semiconductor:

» An extrinsic semiconductor is one that has been doped, that is, into which a doping agent has been
introduced, giving it different electrical properties than the intrinsic (pure) semiconductor.

Intrinsic

i Donor atoms Acceptor atoms
semiconductor

Group IV . i} . Phosphorus, Arsenic | Boron, Aluminium,
. Silicon, Germanium _ .
semiconductors , Antimony Gallium



N-tfype extrinsic semiconductors:

Phosphorus

» Formed by adding donor atoms to the intrinsic semiconductor (Si)

» donors: pentavalent elements from group V (P, As, Sb) — release of
electrons — n-type semiconductor

unbound
electron

Before doging After dﬂ.ping
density of states Fermi distribution carrier density of states Fermi distribution carrier
function concentration function concentration

n(E), p(E) ]



N-tfype extrinsic semiconductors:

Under complete ionization n= N '
condition D _ (EFH _EFI" ) [ kT
_, Number of n=n.e

. i
donor atoms ,

n = Nce_(EC _EFH ]J"IlkT — ND E 3 E le n
Ffn —Lm T n; Ascending Fermi level

I

E.—E, =kI'In(N./N,)

EFH = EC — kT ln(NC /ND) After doping
density of states Fermi distribution carrier
function concentration
n — N e_(-EC _EFH)‘F'&_T E‘
C 4
— e—(Ec —Ep+Eg—Eg ) KT -/ .
i E
—~(Ec—Eg ) kT __—(Eg—Eg, )/ kT G
= N e Ec Er)/HT o~(En=Ez)
n. >

? N(E)



o-Type extrinsic semiconductors:

» Formed by adding acceptor atoms to the intrinsic semiconductor (Si)

» Acceptors: trivalent elements from group III (B, Al, Ga) — capture of bl
electron — hole remains — p-type semiconductor \

Before doping After doping
density of states Fermi distribution carrier density of states Fermi distribution carrier
fU”CUOn concentration function concentration




p-type extrinsic semiconductors:

Under complete ionization — '
condition p N (EFP _EFI' )fkT
“~__ Number of p =n.e
acceptor atoms -
—(Eg,—Ey )/ kT
p=Nye 7 =N, E, =E, —kTln 2
Fp Fi N Descending Fermi level
i
E, —E, =kTIn(N, /N ) |
.‘. EFP —_— EV + kT IH(NV /NA) After doping
density of states Fermi distribution carrier
funci .
D= N 3_( Ep,—Ey )/ kT unction E concentration
Vv
_ N e_(EFp_EFr' +Eg—Ey )/ kT ‘/ CB t) bk
— N —(Ep EV)HFTE (Epp—Eg ) KT Eg
1, N(E; n(E). p(E)




Extrinsic semiconductor:

Band diagram, density of states, Fermi-Dirac distribution, and the carrier
concentrations at thermal equilibrium

Intrinsic semiconductor

n-type semiconductor

- - -~ i s s

p-type semiconductor
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Summary:

1 I
F(E) = 1 + QlE-ER)H]
27om, kT
N =2(2m;:;kT)3;g N, =2( ;; )352

N o Ea—Er)HT

—(Eo—Eg )/ kT p,=N,

n =N_.e
n=n,exp(E,—E,/KT) p=n,exp(E, _EF/KT)

—E_ /2kT
ni=.,chNve{ 124D

h = 6.6261 x 10T s Planck constant
E +E, kT, N
-4 n
EFf —— L In—~ EFn =F —F kT In — Me = 91094 x 10" kg free electron mass
2 2 N, C n; e = 1.6022x 107" C elementary charge
k = 13807x10-J/K Boltzmann constant
E-+E, 3 m p
E =—<_"Y 4+ Tlh—" E_=E_—-kTlh<t
Fi 2 4 — Fp Fi 7 leV= 1602x107CV = 1.6022x107"]

e I kT = 2586 meV (at T=300K)




END OF LECTURE

BEST WISHES




